HydDB: A web tool for hydrogenase classification and analysis HydDB: A web tool for hydrogenase classification and analysis

HydDB: A web tool for hydrogenase classification and analysis


  • Schwartz, E., Fritsch, J. & Friedrich, B. H2-metabolizing prokaryotes (Springer Berlin Heidelberg, 2013).

  • Greening, C. et al. Genome and metagenome surveys of hydrogenase diversity indicate H2 is a widely-utilised energy source for microbial growth and survival. Isme J. 10, 761–777 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Cook, G. M., Greening, C., Hards, K. & Berney, M. In Advances in Bacterial Pathogen Biology (ed. Poole, R. K. ) 65, 1–62 (Academic Press, 2014).

    CAS 

    Google Scholar
     

  • Lane, N., Allen, J. F. & Martin, W. How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32, 271–280 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Lubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Peters, J. W. et al. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism and maturation. Biochim. Biophys. Acta – Mol. Cell Res. 1853, 1350–1369 (2014).


    Google Scholar
     

  • Carbonero, F., Benefiel, A. C. & Gaskins, H. R. Contributions of the microbial hydrogen economy to colonic homeostasis. Nat Rev Gastroenterol Hepatol 9, 504–518 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Greening, C. et al. Atmospheric hydrogen scavenging: from enzymes to ecosystems. Appl. Environ. Microbiol. 81, 1190–1199 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levin, D. B., Pitt, L. & Love, M. Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy 29, 173–185 (2004).

    CAS 

    Google Scholar
     

  • Cracknell, J. A., Vincent, K. A. & Armstrong, F. A. Enzymes as working or inspirational catalysts for fuel cells and electrolysis. Chem. Rev. 108, 2439–2461 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Shima, S. et al. The crystal structure of [Fe]-Hydrogenase reveals the geometry of the active site. Science 321, 572–575 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenz, O. & Friedrich, B. A novel multicomponent regulatory system mediates H2 sensing in Alcaligenes eutrophus. Proc. Natl. Acad. Sci. USA 95, 12474–12479 (1998).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greening, C., Berney, M., Hards, K., Cook, G. M. & Conrad, R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc. Natl. Acad. Sci. USA 111, 4257–4261 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuchmann, K. & Müller, V. A bacterial electron-bifurcating hydrogenase. J. Biol. Chem. 287, 31165–31171 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vignais, P. M., Billoud, B. & Meyer, J. Classification and phylogeny of hydrogenases. Fems Microbiol. Rev. 25, 455–501 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Calusinska, M., Happe, T., Joris, B. & Wilmotte, A. The surprising diversity of clostridial hydrogenases: a comparative genomic perspective. Microbiology 156, 1575–1588 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Atkinson, H. J., Morris, J. H., Ferrin, T. E. & Babbitt, P. C. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. Plos One 4, e4345 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, F. H. et al. Sequence-structure-function classification of a catalytically diverse oxidoreductase superfamily in mycobacteria. J. Mol. Biol. 427, 3554–3571 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Ney, B. et al. The methanogenic redox cofactor F420 is widely synthesized by aerobic soil bacteria. Isme J., 10.1038/ismej.2016.100 (2016).

  • Stetter, K. O. Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol. 10, 172–173 (1988).


    Google Scholar
     

  • Deppenmeier, U. & Blaut, M. Analysis of the vhoGAC and vhtGAC operons from Methanosarcina mazei strain Gö1, both encoding a membrane-bound hydrogenase and a cytochrome b. Eur. J. Biochem. 269, 261–269 (1995).


    Google Scholar
     

  • Kim, Y. J. et al. Formate-driven growth coupled with H2 production. Nature 467, 352–355 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McTernan, P. M. et al. Intact functional fourteen-subunit respiratory membrane-bound [NiFe]-hydrogenase complex of the hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. Chem. 289, 19364–19372 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lie, T. J. et al. Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis. Proc. Natl. Acad. Sci. USA 109, 15473–15478 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auernik, K. S. & Kelly, R. M. Physiological versatility of the extremely thermoacidophilic archaeon Metallosphaera sedula supported by transcriptomic analysis of heterotrophic, autotrophic and mixotrophic growth. Appl. Environ. Microbiol. 76, 931–935 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Giaveno, M. A., Urbieta, M. S., Ulloa, J. R., González Toril, E. & Donati, E. R. Physiologic versatility and growth flexibility as the Main characteristics of a novel thermoacidophilic Acidianus strain isolated from Copahue geothermal area in Argentina. Microb. Ecol. 65, 336–346 (2012).

    PubMed 

    Google Scholar
     

  • Poudel, S. et al. Unification of [FeFe]-hydrogenases into three structural and functional groups. Biochim. Biophys. Acta (BBA)-General Subj., 10.1016/j.bbagen.2016.05.034 (2016).

  • Marchler-Bauer, A. & Bryant, S. H. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32, W327–W331 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berney, M., Greening, C., Hards, K., Collins, D. & Cook, G. M. Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis. Environ. Microbiol. 16, 318–330 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Greening, C. et al. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc. Natl. Acad. Sci. 112, 10497–10502 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Phaeodactylibacter xiamenensis gen. nov., sp. nov., a member of the family Saprospiraceae isolated from the marine alga Phaeodactylum tricornutum. Int. J. Syst. Evol. Microbiol. 64, 3496–3502 (2014).

    PubMed 

    Google Scholar
     

  • Koch, H. et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 345, 1052–1054 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Carere, C. R. et al. Growth and persistence of methanotrophic bacteria by aerobic hydrogen respiration. Proc. Natl. Acad. Sci. USA (2016).

  • Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eloe-Fadrosh, E. A. et al. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat Commun 7 (2016).

  • Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Greening, C. & Cook, G. M. Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Curr. Opin. Microbiol. 18, 30–38 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Greening, C. et al. Physiology, biochemistry and applications of F420- and Fo-dependent redox reactions. Microbiol. Mol. Biol. Rev. 80, 451–493 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markowitz, V. M. et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Research 40, D115–D122 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cover, T. & Hart, P. Nearest neighbor pattern classification. Ieee Trans. Inf. Theory 13 (1967).

  • Constant, P., Chowdhury, S. P., Pratscher, J. & Conrad, R. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ. Microbiol. 12, 821–829 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Hamann, E. et al. Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature 534, 254–258 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 16034 (2016).

    CAS 
    PubMed 

    Google Scholar