SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules

SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules


  • Hay, M., Thomas, D. W., Craighead, J. L., Economides, C. & Rosenthal, J. Clinical development success rates for investigational drugs. Nature Biotechnol. 32, 40–51 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Dahlin, J. L., Inglese, J. & Walters, M. A. Mitigating risk in academic preclinical drug discovery. Nature Rev. Drug Discov. 14, 279–294 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tian, S. et al. The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev 86, 2–10 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 46, 3–26 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brenk, R. et al. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 3, 435–444 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baell, J. B. & Holloway, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53, 2719–2740 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruns, R. F. & Watson, I. A. Rules for Identifying Potentially Reactive or Promiscuous Compounds. J. Med. Chem. 55, 9763–9772 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irwin, J. J. et al. An Aggregation Advisor for Ligand Discovery. J. Med. Chem. 58, 7076–7087 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Boyle, N. M. et al. OpenBabel: An open chemical toolbox. J. Cheminform. 3, 33 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cereto-Massaguà, A. et al. Molecular fingerprint similarity search in virtual screening. Methods 71, 58–63 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ertl, P. & Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 1, 8 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Clark, A. M. et al. Open Source Bayesian Models. 1. Application to ADME/Tox and Drug Discovery Datasets. J. Chem. Inf. Model. 55, 1231–1245 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, J. B. O. Machine learning methods in chemoinformatics. WIREs Comput. Mol. Sci. 4, 468–481 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pires, D. E. V., Blundell, T. L. & Ascher, D. B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 58, 4066–4072 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, F. et al. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model. 52, 3099–3105 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Daina, A., Michielin, O. & Zoete, V. iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 54, 3284–3301 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daina, A. & Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 11, 1117–1121 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zoete, V., Daina, A., Bovigny, C. & Michielin, O. SwissSimilarity: A Web Tool for Low to Ultra High Throughput Ligand-Based Virtual Screening. J. Chem. Inf. Model. 56, 1399–1404 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gfeller, D. et al. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 42, W32–W38 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grosdidier, A., Zoete, V. & Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 39, W270–7 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wirth, M., Zoete, V., Michielin, O. & Sauer, W. H. B. SwissBioisostere: a database of molecular replacements for ligand design. Nucleic Acids Res. 41, D1137–43 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zoete, V., Cuendet, M. A., Grosdidier, A. & Michielin, O. SwissParam: a fast force field generation tool for small organic molecules. J. Comput. Chem. 32, 2359–2368 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ritchie, T. J., Ertl, P. & Lewis, R. The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discov. Today 16, 65–72 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lovering, F., Bikker, J. & Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 52, 6752–6756 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ertl, P., Rohde, B. & Selzer, P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. J. Med. Chem. 43, 3714–3717 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pliska, V., Testa, B. & van de Waterbeemd, H. In Lipophilicity in Drug Action and Toxicology 1–6 (Wiley-VCH Verlag GmbH, 1996).

  • Arnott, J. A. & Planey, S. L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 7, 863–875 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mannhold, R., Poda, G. I. & Ostermann, C. Calculation of molecular lipophilicity: State‐of‐the‐art and comparison of log P methods on more than 96,000 compounds. J. Pharm. Sci. 98, 861–893 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, T. et al. Computation of Octanol−Water Partition Coefficients by Guiding an Additive Model with Knowledge. J Chem Inf Model 47, 2140–2148 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wildman, S. A. & Crippen, G. M. Prediction of Physicochemical Parameters by Atomic Contributions. J. Chem. Inf. Model. 39, 868–873 (1999).

    CAS 

    Google Scholar
     

  • Moriguchi, I., Shuichi, H., Liu, Q., Nakagome, I. & Matsushita, Y. Simple Method of Calculating Octanol/Water Partition Coefficient. Chem. Pharm. Bull. 40, 127–130 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Moriguchi, I., Shuichi, H., Nakagome, I. & Hirano, H. Comparison of reliability of log P values for Drugs calculated by several methods. Chem. Pharm. Bull. 42, 976–978 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Ritchie, T. J., Macdonald, S. J. F., Peace, S., Pickett, S. D. & Luscombe, C. N. Increasing small molecule drug developability in sub-optimal chemical space. Med. Chem. Commun. 4, 673 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Ottaviani, G. et al. What is modulating solubility in simulated intestinal fluids? Eur J Pharm Sci 41, 452–457 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Savjani, K. T., Gajjar, A. K. & Savjani, J. K. Drug solubility: importance and enhancement techniques. ISRN Pharm 2012, 195727 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delaney, J. S. ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. J. Chem. Inf. Model. 44, 1000–1005 (2004).

    CAS 

    Google Scholar
     

  • Ali, J., Camilleri, P., Brown, M. B., Hutt, A. J. & Kirton, S. B. Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model. 52, 420–428 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yalkowsky, S. H. & Valvani, S. C. Solubility and partitioning I: Solubility of nonelectrolytes in water. J Pharm Sci 69, 912–922 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Potts, R. O. & Guy, R. H. Predicting Skin Permeability. Pharm. Res. 09, 663–669 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Montanari, F. & Ecker, G. F. Prediction of drug-ABC-transporter interaction–Recent advances and future challenges. Adv. Drug Deliv. Rev. 86, 17–26 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szakács, G., Váradi, A., Ozvegy-Laczka, C. & Sarkadi, B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov. Today 13, 379–393 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sharom, F. J. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9, 105–127 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Testa, B. & Kraemer, S. D. The Biochemistry of Drug Metabolism – An Introduction – Testa – 2007 – Chemistry & Biodiversity – Wiley Online Library. Chem. Biodivers (2007).

  • van Waterschoot, R. A. B. & Schinkel, A. H. A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice. Pharmacological Reviews 63, 390–410 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolf, C. R., Smith, G. & Smith, R. L. Pharmacogenetics. British Medical Journal (2000).

  • Di, L. The role of drug metabolizing enzymes in clearance. Expert Opin. Drug Metab. Toxicol. 10, 379–393 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hollenberg, P. F. Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug Metab. Rev. 34, 17–35 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, S.-M. et al. New era in drug interaction evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process. J. Clin. Pharmacol. 48, 662–670 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirchmair, J. et al. Predicting drug metabolism: experiment and/or computation? Nature Rev. Drug Discov. 14, 387–404 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Veith, H. et al. Comprehensive characterization of cytochrome P450 isozyme selectivity across chemical libraries. Nature Biotechnol. 27, 1050–1055 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).

    MATH 

    Google Scholar
     

  • Mishra, N. K., Agarwal, S. & Raghava, G. P. Prediction of cytochrome P450 isoform responsible for metabolizing a drug molecule. BMC Pharmacol. 10, 8 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sedykh, A. et al. Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm. Res. 30, 996–1007 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Rostkowski, M., Spjuth, O. & Rydberg, P. WhichCyp: prediction of cytochromes P450 inhibition. Bioinformatics 29, 2051–2052 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H., Veith, H., Xia, M., Austin, C. P. & Huang, R. Predictive models for cytochrome p450 isozymes based on quantitative high throughput screening data. J. Chem. inf. Model. 51, 2474–2481 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carbon-Mangels, M. & Hutter, M. C. Selecting Relevant Descriptors for Classification by Bayesian Estimates: A Comparison with Decision Trees and Support Vector Machines Approaches for Disparate Data Sets. Mol. Inf. 30, 885–895 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. P-glycoprotein substrate models using support vector machines based on a comprehensive data set. J. Chem. Inf. Model. 51, 1447–1456 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghose, A. K., Viswanadhan, V. N. & Wendoloski, J. J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb. Chem. 1, 55–68 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Egan, W. J., Merz, K. M. & Baldwin, J. J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 43, 3867–3877 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muegge, I., Heald, S. L. & Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 44, 1841–1846 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, Y. C. A Bioavailability Score. J. Med. Chem. 48, 3164–3170 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hann, M. M. & Keserű, G. M. Finding the sweet spot: the role of nature and nurture in medicinal chemistry. Nature Rev. Drug Discov. 11, 355–365 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Teague, S., Davis, A., Leeson, P. & Oprea, T. The Design of Leadlike Combinatorial Libraries. Angew. Chem. Int. Ed. Engl. 38, 3743–3748 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fukunishi, Y., Kurosawa, T., Mikami, Y. & Nakamura, H. Prediction of synthetic accessibility based on commercially available compound databases. J Chem Inf Model 54, 3259–3267 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zoete, V., Daina, A., Bovigny, C. & Michielin, O. SwissSimilarity. A web tool for low to ultra high-throughput ligand-based virtual screening. J. Chem. Inf. Model. 58, 1399–1404 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gfeller, D., Michielin, O. & Zoete, V. SwissSidechain: a molecular and structural database of non-natural sidechains. Nucleic Acids Res. 41, D327–32 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, M. S., Feig, M., Salsbury, F. R. & Brooks, C. L. New analytic approximation to the standard molecular volume definition and its application to generalized Born calculations. J. Comput. Chem. 24, 1348–1356 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mak, L. et al. Metrabase: a cheminformatics and bioinformatics database for small molecule transporter data analysis and (Q)SAR modeling. J. Cheminform. 7, 31 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Poongavanam, V. V., Haider, N. N. & Ecker, G. F. G. Fingerprint-based in silico models for the prediction of P-glycoprotein substrates and inhibitors. Bioorg. Med. Chem. 20, 5388–5395 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. et al. PubChem Substance and Compound databases. Nucleic Acids Res. 44, D1202–13 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ward, J. H. Jr. Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association (1963).

  • Chang, C.-C. & Lin, C.-J. LIBSVM. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011).

    Article 

    Google Scholar
     

  • Egan, W. J. & Lauri, G. Prediction of intestinal permeability. Adv. Drug Deliv. Rev. 54, 273–289 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irwin, J. J. & Shoichet, B. K. ZINC – A free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, F. et al. Classification of Cytochrome P450 Inhibitors and Noninhibitors Using Combined Classifiers. J. Chem. Inf. Model. 51, 996–1011 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar