Web-based multi-omics integration using the Analyst software suite Web-based multi-omics integration using the Analyst software suite

Web-based multi-omics integration using the Analyst software suite


  • Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, J.-D. J. Understanding biological functions through molecular networks. Cell Res. 18, 224–237 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian, I., Verma, S., Kumar, S., Jere, A. & Anamika, K. Multi-omics data integration, interpretation, and its application. Bioinform. Biol. Insights 14, 1177932219899051 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eicher, T. et al. Metabolomics and multi-omics integration: a survey of computational methods and resources. Metabolites https://doi.org/10.3390/metabo10050202 (2020).

  • Huang, S., Chaudhary, K. & Garmire, L. X. More is better: recent progress in multi-omics data integration methods. Front. Genetics https://doi.org/10.3389/fgene.2017.00084 (2017).

  • Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience https://doi.org/10.1093/gigascience/giz107 (2019).

  • Verheijen, M. et al. Towards the development of an omics data analysis framework. Reg. Toxicol. Pharmacol. 112, 104621 (2020).

    Article 

    Google Scholar
     

  • Tarazona, S., Arzalluz-Luque, A. & Conesa, A. Undisclosed, unmet and neglected challenges in multi-omics studies. Nat. Comput. Sci. 1, 395–402 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gomez-Cabrero, D. et al. Data integration in the era of omics: current and future challenges. BMC Syst. Biol. 8, I1 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palsson, B. & Zengler, K. The challenges of integrating multi-omic data sets. Nat. Chem. Biol. 6, 787–789 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Jendoubi, T. Approaches to integrating metabolomics and multi-omics data: a primer. Metabolites 11, 184 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D. et al. Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction. J. Am. Med. Inform. Assoc. 22, 109–120 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, G., Li, S. & Xia, J. in Computational Methods and Data Analysis for Metabolomics (ed Li. S) 469–487 (Springer, 2020).

  • Blatti, C. III et al. Knowledge-guided analysis of “omics” data using the KnowEnG cloud platform. PLoS Biol. 18, e3000583 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T. et al. PaintOmics 4: new tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases. Nucleic Acids Res. 50, W551–W559 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, G., Pang, Z., Lu, Y., Ewald, J. & Xia, J. OmicsNet 2.0: a web-based platform for multi-omics integration and network visual analytics. Nucleic Acids Res. 50, W527–W533 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cantini, L. et al. Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer. Nat. Commun. 12, 124 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Picard, M., Scott-Boyer, M.-P., Bodein, A., Périn, O. & Droit, A. Integration strategies of multi-omics data for machine learning analysis. Comput. Struct. Biotechnol. J. 19, 3735–3746 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Argelaguet, R. et al. Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14, e8124 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCabe, S. D., Lin, D.-Y. & Love, M. I. Consistency and overfitting of multi-omics methods on experimental data. Brief. Bioinform. 21, 1277–1284 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Pang, Z. et al. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 17, 1735–1761 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, J. & Wishart, D. S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc. 6, 743–760 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, J., Gill, E. E. & Hancock, R. E. W. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat. Protoc. 10, 823–844 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, L. & Xia, J. in Transcription Factor Regulatory Networks (eds Song, Q. & Tao, Z.) 185–204 (Springer, 2023).

  • Chang, L., Zhou, G., Soufan, O. & Xia, J. miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 48, W244–W251 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, G., Ewald, J. & Xia, J. OmicsAnalyst: a comprehensive web-based platform for visual analytics of multi-omics data. Nucleic Acids Res. 49, W476–W482 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, G. & Xia, J. OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space. Nucleic Acids Res. 46, W514–W522 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wigger, L. et al. Multi-omics profiling of living human pancreatic islet donors reveals heterogeneous beta cell trajectories towards type 2 diabetes. Nat. Metab. 3, 1017–1031 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pang, Z., Chong, J., Li, S. & Xia, J. MetaboAnalystR 3.0: toward an optimized workflow for global metabolomics. Metabolites 10, 186 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Röst, H. L. et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 13, 741–748 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Schmid, R. et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 41, 447–449 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S., Siddiqa, A., Thapa, M., Chi, Y. & Zheng, S. Trackable and scalable LC–MS metabolomics data processing using asari. Nat. Commun. 14, 4113 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 9, e1003123 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, J. & Wishart, D. S. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 38, W71–W77 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, J. & Wishart, D. S. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26, 2342–2344 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schadt, E. E. Molecular networks as sensors and drivers of common human diseases. Nature 461, 218–223 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dianati, N. Unwinding the hairball graph: Pruning algorithms for weighted complex networks. Phys. Rev. E 93, 012304 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lovino, M. et al. A survey on data integration for multi-omics sample clustering. Neurocomputing 488, 494–508 (2022).

    Article 

    Google Scholar
     

  • Meng, C. et al. Dimension reduction techniques for the integrative analysis of multi-omics data. Brief. Bioinform. 17, 628–641 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biol. 15, 1–21 (2014).

    Article 

    Google Scholar
     

  • Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47–e47 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, J. et al. Mergeomics 2.0: a web server for multi-omics data integration to elucidate disease networks and predict therapeutics. Nucleic Acids Res. 49, W375–W387 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernández-de-Diego, R. et al. PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Res. 46, W503–W509 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuo, T.-C., Tian, T.-F. & Tseng, Y. J. 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data. BMC Syst. Biol. 7, 64 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zoppi, J., Guillaume, J.-F., Neunlist, M. & Chaffron, S. MiBiOmics: an interactive web application for multi-omics data exploration and integration. BMC Bioinform. 22, 6 (2021).

    Article 

    Google Scholar
     

  • Mirza, B. et al. Machine learning and integrative analysis of biomedical big data. Genes 10, 87 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asada, K. et al. Integrated analysis of whole genome and epigenome data using machine learning technology: toward the establishment of precision oncology. Front. Oncol. https://doi.org/10.3389/fonc.2021.666937 (2021).

  • Cazaly, E. et al. Making sense of the epigenome using data integration approaches. Front. Pharmacol. https://doi.org/10.3389/fphar.2019.00126 (2019).

  • Simovski, B. et al. GSuite HyperBrowser: integrative analysis of dataset collections across the genome and epigenome. GigaScience https://doi.org/10.1093/gigascience/gix032 (2017).

  • Kang, M., Ko, E. & Mersha, T. B. A roadmap for multi-omics data integration using deep learning. Brief. Bioinform. https://doi.org/10.1093/bib/bbab454 (2022).

  • Lee, J., Hyeon, D. Y. & Hwang, D. Single-cell multiomics: technologies and data analysis methods. Exp. Mol. Med. 52, 1428–1442 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macaulay, I. C., Ponting, C. P. & Voet, T. Single-cell multiomics: multiple measurements from single cells. Trends Genet. 33, 155–168 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarazona, S. et al. Harmonization of quality metrics and power calculation in multi-omic studies. Nat. Commun. 11, 3092 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Souza, N. The ENCODE project. Nat. Methods 9, 1046–1046 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Lonsdale, J. et al. The Genotype–Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Papatheodorou, I. et al. Expression Atlas: gene and protein expression across multiple studies and organisms. Nucleic Acids Res. 46, D246–D251 (2017).

    Article 
    PubMed Central 

    Google Scholar
     

  • Gertsman, I. & Barshop, B. A. Promises and pitfalls of untargeted metabolomics. J. Inherit. Metab. Dis. 41, 355–366 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, P. et al. Ultrafast functional profiling of RNA-seq data for nonmodel organisms. Genome Res. 31, 713–720 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, P. et al. ExpressAnalyst: a unified platform for RNA-sequencing analysis in non-model species. Nat. Commun. 14, 2995 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourgon, R., Gentleman, R. & Huber, W. Independent filtering increases detection power for high-throughput experiments. Proc. Natl Acad. Sci. USA 107, 9546–9551 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).

  • Välikangas, T., Suomi, T. & Elo, L. L. A systematic evaluation of normalization methods in quantitative label-free proteomics. Brief. Bioinform. 19, 1–11 (2016).

    PubMed Central 

    Google Scholar
     

  • Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–d368 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Varlet, A. A. et al. Fine-tuning of actin dynamics by the HSPB8–BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division. Cell Stress Chaperones 22, 553–567 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nevins, A. K. & Thurmond, D. C. Glucose regulates the cortical actin network through modulation of Cdc42 cycling to stimulate insulin secretion. Am. J. Physiol. Cell Physiol. 285, C698–C710 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belosludtsev, K. N. et al. Alisporivir treatment alleviates mitochondrial dysfunction in the skeletal muscles of C57BL/6NCrl mice with high-fat diet/streptozotocin-induced diabetes mellitus. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22179524 (2021).

  • Neuhausen, S. L. et al. Genetic variation in insulin-like growth factor signaling genes and breast cancer risk among BRCA1 and BRCA2 carriers. Breast Cancer Res. 11, R76 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol. 36, 272–281 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, H. et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 46, D380–d386 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heslegrave, A. J. et al. Leucine-sensitive hyperinsulinaemic hypoglycaemia in patients with loss of function mutations in 3-hydroxyacyl-CoA dehydrogenase. Orphanet. J. Rare Dis. 7, 25 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. & Sang, Y. M. Genetic pathogenesis, diagnosis, and treatment of short-chain 3-hydroxyacyl-coenzyme A dehydrogenase hyperinsulinism. Orphanet. J. Rare Dis. 16, 467 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerst, F. et al. The expression of aldolase B in islets is negatively associated with insulin secretion in humans. J. Clin. Endocrinol. Metab. 103, 4373–4383 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Son, J. et al. Genetic and pharmacologic inhibition of ALDH1A3 as a treatment of β-cell failure. Nat. Commun. 14, 558 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warde-Farley, D. et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214–W220 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Y. V. & Hu, Y. J. Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv. Genet. 93, 147–190 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinu, F. R. et al. Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites 9, 76 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar